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Accurate path integral representations of the Fokker-Planck equation
with a linear reference system: Comparative study of current theories

A. N. Drozdov* and J. J. Brey
Fı́sica Teo´rica, Universidad de Sevilla, Apartado de Correos 1065, Sevilla 41080, Spain

~Received 27 May 1997; revised manuscript received 28 July 1997!

This paper presents an application of new discrete path integral solutions recently introduced for Fokker-
Planck dynamics with the aim to compare their relative efficacy in giving precise numerical results. The basic
idea used in the derivation of these solutions is to model a complex Fokker-Planck equation with a general drift
coefficient by a linear~Ornstein-Uhlenbeck! process, which is solved exactly, and to then employ an iterative
technique to quantify what is missing from the reference description. We reexamine and analyze two different
approaches to realize the above strategy. These are an operator decoupling technique and a power series
expansion method. Both approaches allow one to construct higher-order propagators valid to any desired
precision in a time incrementt. Their use in a path integral means thatmanyfewer time stepsN are required
to achieve a given accuracy for a given net incrementt5Nt. Our comparison also includes results from
standard path integral representations. The relative efficacy of the various different methods is illustrated by
means of two problems, namely, the dynamics of an overdamped Brownian particle in a potential field and the
Kramers model of chemical reaction. The former process can be modeled by a one-dimensional Fokker-Planck
equation for the position coordinate only, while the latter is governed by a two-dimensional Fokker-Planck
equation where the relaxation over velocity is taken into account. The numerical applications clearly demon-
strate that the new representations are superior in the sense that they yield much moreaccurateresults withless
computational effort than the best alternative path integral method now in use.@S1063-651X~98!02001-7#

PACS number~s!: 05.40.1j, 02.50.Ey
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I. INTRODUCTION

There is a wide variety of phenomena in physics, che
istry, and biology whose dynamics is accurately describe
terms of a Fokker-Planck equation. It is a mesoscopic kin
equation for the distribution functionP(q,t) involving a de-
terministic drift vector G and a diffusion tensorD. The
former describes the deterministic path of the system, w
the latter incorporates fluctuations away from this path. T
equation typically has the form

] tP~q,t !5LP~q,t ![@2] iGi~q!1 1
2 Di j ] i j

2 #P~q,t !,
~1.1!

where the standard summation convention over repeate
dexes is implied,q5$q1 , . . . ,qn%, and L is the Fokker-
Planck operator defined by Eq.~1.1!. In the study of time
evolution of the processes governed by Eq.~1.1! much infor-
mation can be found from the investigation of the propa
tor, which is the fundamental solution of the equation sa
fying the initial condition

P~q,0uq0!5d~q2q0!. ~1.2!

Specific examples of Fokker-Planck equations can be dr
from a vast amount of different fields ranging from nucle
physics to communication theory@1,2#. The flexibility of the
above description makes Eq.~1.1! very attractive both for
theoreticians and for experimentalists. From an experime

*Permanent address: Institute for High Temperatures, 13
Izhorskaya Street, 127412 Moscow, Russia.
571063-651X/98/57~1!/146~13!/$15.00
-
in
ic

le
e

in-

-
-

n
r

al

point of view, an appealing feature of the Fokker-Plan
equation is that it provides a very useful statistical model
understanding various dynamical processes in realistic
tems driven by noise and friction. Some theoretical aspe
of the Fokker-Planck equation are still under intensive stu
Many challenges have a single origin: analytical solutions
the Fokker-Planck equation are available for a few sim
cases, and virtually all nontrivial problems cannot be solv
exactly with presently known mathematical techniques. T
situation has led to the search for approximate method
analyze such problems either analytically or numerically.
these methods are efficient in treating one-dimensional p
lems. Some of them remain efficient in two dimensions, a
just a few methods can be applied to systems with more t
two degrees of freedom.

In this context, it is difficult to overemphasize the usefu
ness of the path integral approach to Fokker-Planck dyn
ics. Being formally exact, it provides a global solution~inte-
gral formulation! of the problem in question, which is, in
principle, amenable to approximations. Several approxim
schemes could be efficient in analytically treating this so
tion in arbitrary dimensions, provided that the specific a
sumptions on which they are based are satisfied. Nume
applications have also increased enormously over the
decade, yielding important new insights into the behavior
complex physical systems. From a computational point
view, one of the great advantages of the path integral form
lation is that it reduces the problem of solving the Fokk
Planck equation to the evaluation of an integral whose
mension growslinearly with the number of coupled degree
of freedom. The starting point for its derivation is the fa
that the propagator for a finite timet can be factored into a
product ofN propagators, each of them describing the ev
9
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57 147ACCURATE PATH INTEGRAL REPRESENTATIONS OF . . .
lution of the system for a shorter time intervalt5t/N,

P~q,tuq0!

5E dqN21
•••E dq1P~q,tuqN21!•••P~q1,tuq0!.

~1.3!

Clearly, the above equation is exact for any number of ti
slicesN. The only thing that requiresN to be large is that the
approximation used for the short time, or single step pro
gator in the right-hand side of Eq.~1.3!,

P~qi 11,tuqi !5P~k!~qi 11,tuqi !1O~tk11!, ~1.4!

be sufficiently accurate. Hereby,k is the order of approxima
tion. With the replacement given by Eq.~1.4!, the problem is
reduced to the calculation of a multidimensional integ
~also referred to as a discrete path integral!

P~q,tuq0!5E dqN21
•••E dq1P~k!~q,tuqN21!•••P~k!

3~q1,tuq0!1O~ tk11/Nk!. ~1.5!

This equation expresses the distribution function for an a
trary timet in terms of the known short time propagator. A
there exists no unique way to determine the short time pro
gator, many different path integral representations co
sponding to various different approximate schemes have
sulted @3# ~for a recent review see also Ref.@4#!. In the
continuous time limitN→`,t→0, these representations b
come exact, but they are, in general, unsolvable. Both c
tinuous and discrete path integral representations are
evant. The former yield a new conceptual basis
understanding the physics described by the Fokker-Pla
equation, and the latter provide a powerful tool for obtaini
detailed numerical solutions that can be made arbitrarily
curate. Unlike other methods, the path integral solution
mains stable for rather large time stepst and permits the
efficient treatment of multidimensional systems without
troducing uncontrolled approximations. This is achievable
taking advantage of Monte Carlo techniques, which av
explicit reference to distribution functions and thus circu
vent storing large dimensional matrices. In studying low
mensional systems, when storage requirements are no
dramatic yet, the iterative evaluation of Eq.~1.5! is prefer-
able. It yields numerical results free of statistical errors.

The practical applicability of the numerical schem
available for both global and iterative evaluation of the d
crete path integral depends critically on the dimension of
latter. Therefore, higher-order short time propagators, ac
rate for as long a timet as possible, are generally desirab
The obvious reason for this is that the higher the rate
convergence of a path integral, the smaller the numbe
integration variables~and therefore the execution time! that
are required to evaluate it to a given accuracy. Until recen
however, the only requirement usually made on the sh
time propagator was that it satisfies Eq.~1.1! to orderO(t).
For example, one of the commonly used path integral rep
sentations is based on the primitive first-order propaga
reading
e
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P~1!~q,tuq0!5@~2pt!mdetD#21/2expH 2
1

2t
@q2q0

2tG~q0!#•D21@q2q02tG~q0!#J .

~1.6!

It is obtained by replacing in Eq.~1.1! the true drift vector
G(q) by a constant vectorG(q0) or, in other words, by
mapping the solution of a difficult problem onto a simpl
‘‘zero-order’’ free-particle reference system, which is solv
exactly. This derivation reflects the fact that only the fi
two cumulants, namely, the means

^q&5q01tG~q0!1O~t2! ~1.7!

and the covariances

Š^qiqj&‹5tDi j 1O~t2! ~1.8!

contribute to the Fokker-Planck equation to orderO(t),
while higher-order cumulants~as well as higher-order terms!
contain information of decreasing significance and, the
fore, can be neglected in the limitt→0. However, the error
made by using the primitive propagator~1.6! is of order 1/N
and thus very short time steps are necessary for accuracy@5#.
Accordingly, the dimension of the resulting integral, E
~1.5!, can be very high if the required propagation time
long @6#.

The above observations have inspired the search for m
efficient short time propagators, which would provide
given precision with a smaller value ofN. A great deal of
work has been recently devoted to resolving this proble
and a number of new theoretical approaches have been
veloped @7–9#. The most appealing feature of these a
proaches is perhaps that they allow one tosystematically
construct path integral representations of Fokker-Planck
namics valid toany desired order in 1/N. It is our purpose
here to demonstrate the computational utility of the high
order representations in concrete realistic models, and c
pare it with the efficacy of standard path integral metho
now in use. Finally, to conclude this introduction we no
that there are many impressive reviews on path integrat
in quantum statistics and mechanics@10#. However, the same
analysis of path integral methods for stochastic proces
was rare up to recent times.

The remainder of the paper is organized as follows.
Sec. II two higher-order path integral methods are outlin
with some improvements and their limitations are discuss
Numerical examples illustrating the power of various diffe
ent path integral techniques are presented in Sec. III. T
include the dynamics of Brownian motion in a single we
potential and in a double well. Section IV ends the pap
with final remarks. In order to make our article se
contained, a brief description of the standard methods u
for comparison is given in the Appendix.

II. HIGHER-ORDER PROPAGATORS
WITH A LINEAR REFERENCE SYSTEM

For notational simplicity, we consider a one-dimension
Fokker-Planck equation
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148 57A. N. DROZDOV AND J. J. BREY
] tP~x,t !5LP~x,t ![@2]xG~x!1~D/2!]xx
2 #P~x,t !,

~2.1!

which describes the motion of an overdamped Brownian p
ticle in a potential field

U~x!52Ex

dyG~y!. ~2.2!

The drift coefficientG(x) is assumed to be such that th
Fokker-Planck operatorL is bounded on a finite-dimensiona
Hilbert space. Moreover, we restrict the discussion to
case of ‘‘natural’’ or ‘‘inaccessible’’ boundaries@2#. From a
mathematical point of view, diffusion problems of such
type are easier to solve since noexternalboundary condi-
tions are required for the determination of the short ti
propagator. Then, the corresponding equilibrium distribut
function reads

Pe~x![P~x,t→`!5Z21exp@22U~x!/D#, ~2.3!

with Z being a normalization constant. In fact, actual use
the methods described below is not more complicated
many dimensions because high dimensionality does
present special conceptual problems. We also point out
the diffusion coefficientD need not be constant and can be
function of x as well. Besides, with minor modifications t
what appears below the Fokker-Planck operator can be
dependent and even exhibit an explicit dependence on
distribution function.

A. Operator decoupling technique

The most common procedure of approximating the pro
gator by a discrete path integral relies on the operator re
sentation

P~x,tux0!5etLd~x2x0!, ~2.4!

which allows one to rewrite Eq.~1.3! as

etL5~etL!N. ~2.5!

Since L is a sum of noncommuting operators, an opera
decoupling technique must be used to approximate the e
nential operator exp(tL) for short timet by a product of
functions involving each of these operators

etL5Q~k!~t !1O~tk11!,

Q~k!~t !N5etL1O~ tk11/Nk!. ~2.6!

A simple way to achieve this is to divide the Fokker-Plan
operator into two parts,L5A1B, and employ the symmetric
Trotter splitting

Q~2!~t !5etA/2etBetA/2. ~2.7!

The advantage of this breakup is that it is time reversib
The approximate propagator so constructed satisfies the
dition

Q~k!~2t !Q~k!~ t !51, ~2.8!
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as does the exact propagator, exp(tL). Acting by Eq.~2.7! on
a delta function, we arrive at a second-order approximat
for the short time propagator whose explicit form depends
partitioning the original Fokker-Planck operatorL5A1B. A
small sample of that work can be found in Ref.@7#. Except
for some rigorous inequalities@11#, little is known about the
nature of the Trotter product formula, Eqs.~2.6! and~2.7!. Its
convergence as a function ofN must be studied for each
particular case@12#. However, the neglect of the commutat
betweenA and B is often quite severe, and thus use of t
Trotter approximation requires rather fine discretization~i.e.,
largeN) of the path integral.

Until recently, two general approaches were used to ov
come the above problem. Various higher-order decomp
tions were constructed either by explicitly including compo
ite operators of the form†A,@A,B#‡ into the factorized
product@13,14# or by using recursive properties of the Tro
ter splitting, Eq.~2.7!, in order to exclude commutators from
considerations@15#. Each approach has its own advantag
and drawbacks. Although there has been some recent suc
in path integral calculations with a composite operator f
torization @14#, the utility of this approach is generally re
stricted to a certain class of Fokker-Planck equations
which evaluating the composite operators involved in
factorized product is not a major problem. Otherwise the
commutators complicate the expression in such a way
the calculation of the single step propagator may be ou
the question even for simple one-dimensional systems
contrast, multisplit operator factorizations with no commu
tors are readily determined from the recurrence@15#

Q~2k!~t !5Q~2k22!~ckt!Q~2k22!@~122ck!t#Q~2k22!~ckt!,

~2.9!

where the coefficients are defined by 2ck
2k211(1

22ck)
2k2150 with k.1. The recursive derivation ofQ(2k)

starts with the Trotter splittingQ(2) , Eq. ~2.7!, and can be
carried out to arbitrarily high orders. The resulting factoriz
tion can then be written in the explicit form

Q~2k!~t !5)
i

eaitAebitB, ~2.10!

with coefficients (ai ,bi) determined by the required order o
accuracy. However, there has been no attempt to apply
approach to Fokker-Planck processes. The reason is tha
yond second order, any finite-order factorization of the fo
~2.10! must produce some negative coefficientsai and bi .
When applied to the Fokker-Planck equation, this means
negative times appear at some diffusion operators, mak
these approximants of no practical relevance for stocha
processes.

Here we employ an alternative method to constr
higher-order approximations, which has been put forward
Refs. @16,17#. The method combines the principal adva
tages of the above two approaches, being free of their dr
backs. Its basic idea is to exploit the error structure of E
~2.7! to remove time slices errors in Trotter-approximat
propagators. An attractive feature of the symmetric Trot
splitting is that an approximate propagator constructed oN
products, each of which satisfies Eq.~2.8!, has an asymptotic
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57 149ACCURATE PATH INTEGRAL REPRESENTATIONS OF . . .
error expansion inevenpowers of 1/N @18#. In such a case
standard extrapolation methods can be applied to Eq.~2.6! to
successively eliminate the low-order errors resulting fr
time discretization. In particular, a Romberg-type appro
mation for the time evolution operator without the 1/N2 error
is

Q~4!~ t !5 1
3 @4Q~2!~ t/2N!2N2Q~2!~ t/N!N#. ~2.11!

The process can always be continued to remove all term
the error series up to but not includingO(1/N2k). Although
this technique~also referred to as Richardson’s deferred a
proach to the limit! has been known for some time@19#, its
effective application to path integrals has been fully realiz
only recently. Schmidt and Lee@16# developed a method fo
calculating finite temperature properties of quantum syste
which involves the successive evaluation of the density m
trix by a Trotter product formula of the form exp(2bH)
'Q(2)(b/N)N. The calculation is performed forN
52,4,6,8,12,16, . . . . A polynomial extrapolation is then
used to fit the result to a low-order polynomial in 1/N2 and to
predict the exact density matrix corresponding to infinite
fine substeps. However, the utility of the above procedur
restricted to one-dimensional systems. Only in that case
possible to generate and store a large number of succe
approximations to the true propagator, whereas the effic
treatment with this technique of multidimensional dynami
processes is obviously beyond the computational power
even the fastest computers.

An alternative procedure that allows one to overcome
problem has been suggested in Ref.@17#. Its key idea is to
apply Richardson’s extrapolation to the average of dyna
cal variables

^g~q!@ t#&5E dqg~q!P~q,t !, ~2.12!

rather than to the propagator itself. The time evolution
^g(q)@ t#& is represented by a scalar function of one varia
for arbitrary dimension of the system. Therefore, no pro
lems of storing and treating large dimensional matrices a
in this case. Starting with someN not necessarily large, on
can perform the calculation for several different valuesNk ,
so that each time the number of points is doubled,Nk
52kN, while the error is reduced by a factor ofN2. The
latter is achieved by making use of the combination

Q~2k12!~ t !5~22k21!21@22kQ~2k!~ t/2N!2N2Q~2k!~ t/N!N#,

~2.13!

which is a straightforward extension of Eq.~2.11! to arbi-
trary k. The procedure is carried out until a prescribed er
tolerance is met.

The symmetric Trotter splitting we employ here is t
same as in earlier works@7,17#. It is based on partitioning the
Fokker-Planck operatorL into a linear contribution,

B5r ]xx1~D/2!]xx
2 , ~2.14!

with the as yet unknown factorr , which is assumed to be
independent ofx, and an anharmonic correction,

A52]xG̃~x!, G̃~x!5G~x!1rx. ~2.15!
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The second-order short time propagator is then obtaine
terms of Eq.~2.7! to yield @7#

P~2!~x,tux0!5J~x,t/2!Pr@H~x,t/2!,tuH~x0 ,2t/2!#.

~2.16!

Hereby, Pr(x,tux0) is the propagator of the referenc
Ornstein-Uhlenbeck process, Eq.~2.14!,

Pr~x,tux0!5@2ps~ t !#21/2exp@2~x2e2rtx0!2/2s~ t !#,

~2.17!

with the variance given by

s~ t !5D~12e22rt !/2r , ~2.18!

H(x,t) is a solution of a deterministic equation of motion

ẋ~ t !5G̃@x~ t !#, x~0!5H, ~2.19!

reading

H~x,t !5exp@2tG̃~x!]x#x5F21@F~x!2t#,
~2.20!

F~x!5Ex

dy/G̃~y!,

with F21 being the inverse function, i.e.,F21@F(x)#5x,
and the quantityJ stands for

J~x,t ![]xH~x,t !5G̃@H~x,t !#/G̃~x!. ~2.21!

The resulting path integral representation converges v
rapidly and takesmuchless single step iterations than eith
of the standard numerical routines described in the App
dix. One drawback of the method, however, is that obtain
numerical results valid to order 1/N2k requires much larger
computation than the corresponding~of the same order! path
integral based on an analytic single step propagator. It m
also be noted that in many dimensions, closed form exp
sions for H(q,t), like Eq. ~2.20!, are available for a few
models and therefore approximate evaluation of the de
ministic solution is generally required. For short times, th
can be done rather accurately by expandingH(q,t) in a Tay-
lor series aboutt50 @7#. When applied to the present prob
lem, the expansion reads

H~x,t !5x2tG̃~x!1t2G̃~x!G̃8~x!/21O~ t3!,
~2.22!

J~x,t !5exp@2tG̃8~x!1t2G̃~x!G̃9~x!/2#1O~ t3!.

Hereby, the prime denotes differentiation with respect tox. It
is clear that the use of approximations like Eq.~2.22! spoils
the time reversibility of the single-step propagator, Eq.~2.8!.
This brings up an interesting question, which will be a
dressed in Sec. III: Does the use of Eq.~2.22! also spoil the
enhanced error reduction?

B. Exponential power series expansion method

As we already noted, numerical higher-order propagat
although accurate, require larger computational effort th
analytic propagators of the same order. For this reason, t
has long been a desire to work out a simple computatio
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150 57A. N. DROZDOV AND J. J. BREY
tool for generating analytic expressions for the propaga
accurate to an order int as high as possible. Only ver
recently has such a theory been developed in terms o
exponential power series expansion formalism@8#. The
theory differs from other perturbation techniques in that
time evolution operator is approximated by a global polyn
mial expansion valid not only for short times, but also in t
intermediate- and long-time domain. This is achieved by r
resenting the full propagator as a product of the refere
propagatorPr with the configuration function

P~x,tux0!5Pr~x,tux0!exp@W~x,x0 ;t !#, ~2.23!

and expanding the exponent of the configuration function
a power series in a given function oft:

W~x,x0 ;t !5jn21~ t !Wn~x,x0!, n>1. ~2.24!

Here, we restrict the discussion to the functionj(t) given by

j~ t !5~12e22rt !/2r , ~2.25!

though a generalization to an arbitrary dependencej of t is
also possible@8#. This particular time dependence has be
chosen as it is associated with the width of the refere
propagator, Eq.~2.18!, and so it is expected to give a reaso
able time scale in a general case. Then, inserting Eqs.~2.23!
and ~2.24! into Eq. ~2.1! and equating like powers ofj, we
arrive at a hierarchy of linear inhomogeneous first-order
ferential equations for the expansion coefficients. These
solved analytically to yield the following explicit expression
for the first few coefficients:

W1~x,x0!5E
x0

x

dyG̃~y!/D,

W2~x,x0!52E
0

1

duV2@x01u~x2x0!#,

~2.26!

W3~x,x0!5rW2~x,x0!2D@2W2~x,x0!1V2~x!

1V2~x0!#/2~x2x0!2,

with

V2~x!5 1
2 @G2~x!/D1G8~x!2r 2x2/D1r #. ~2.27!

The rest of the expansion coefficientsWn with n>4 are
obtained recursively by means of

Wn~x,x0!52E
0

1

duun22Vn@x01u~x2x0!,x0#,

~2.28!

whereVn(x,x0) is a known function determined in terms o
lower-order terms

Vn5rVn212r ~n22!Wn212~D/2!Wn219

2 (
j 52

n22

@~D/2!Wn2 j8 2bn2 j x0#Wj8 , ~2.29!

with bn given by
r

an

e
-

-
e

n

n
e

-

-
re

bn5r n~2n23!!!/ n!.

Unfortunately, the recursive evaluation of the expansion
efficients does not allow us to expressWn(x,x0) in closed
form and thus study general convergence properties for
~2.24!. Establishing these properties is a quite difficult ta
which lies anyway outside the scope of the present pa
though experience with similar problems@20# suggests that
the series in Eq.~2.24! is in general a divergent asymptot
one.

The above power series representation of the propag
is exact in the sense that no approximations have been m
in order to derive it. The recursive evaluation of the expa
sion coefficients is carried outsystematicallyto any desired
order in j(t) and allows one toanalytically calculate the
dynamics in thewhole time domain@8#. Computer algebra
manipulators can be used to do this very efficiently. One m
thus expect that a truncation of the series in Eq.~2.24! at
some low ordern5k11 will provide us with a single step
propagator

P~k!~x,tux0!5Pr~x,tux0!expF (
n51

k11

jn21~t!Wn~x,x0!G ,

~2.30!

which would be rather accurate not only for very short, b
also for relatively large time stepst. Its use in a path integra
means that it will take considerably fewer integrations th
the corresponding numerical propagator described in S
II A, to say nothing about the standard low-order propagat
discussed in the Appendix. It may also be pointed out t
the most commonly used approximation for the short ti
propagator, Eq.~B6!, follows from Eq.~2.30! for k51 and
r 50 if one approximates the integral determiningW2, Eq.
~2.26!, by

W2~x,x0!52E
0

1

duV2@x01u~x2x0!#

' 1
2 @V2~x0!1V2~x!#.

We note, however, that the above approach is not ap
cable to equations with singular diffusion matrices. Althou
there has been some recent success in describing the av
of dynamical variables of these equations by expanding th
in a power series inj(t) @8#, an analogous extension of th
formalism on the propagator level is still lacking. Yet a
other disadvantage of the series representation is that
efficient evaluation of the propagator is feasible if and only
the coefficients of the Fokker-Planck equation are sim
enough ~polynomials or a finite sum of exponentials!. In
such a case, the various integrals involved in the expan
coefficients are to perform analytically. Otherwise, numeri
quadratures are required, making Eq.~2.30! unsuited for path
integral calculations.

C. Determination of the free parameter

Now it remains to determine the free parameterr appear-
ing in the reference propagator, Eq.~2.17!, so that the dy-
namics of the reference system resembles as closely as
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sible that of the full system. This is attainable if on
minimizes in a least-squares sense the anharmonic co
tion, i.e.,

] r^G̃
2~x!@ t#&50, ~2.31!

which immediately yields

r ~ t !52^xG~x!@ t#&/^x2@ t#&. ~2.32!

The above approach is very simple to implement and a
general in the sense that it can be applied to any quasili
single step propagator. The averages^& are easily evaluated
by Eq. ~2.12! before the solutionP(x,t) is advanced to the
next time level. One can still further simplify the determin
tion of r by averaging over the equilibrium distribution, E
~2.3!,

r e52^xG~x!&e /^x2&e . ~2.33!

With Eq. ~2.33! we arrive at a reference propagator that
produces well the long-time dynamics of the full system.
possible explanation for this is that Eq.~2.33! is a good
approximation to the least nonvanishing eigenvalue of
Fokker-Planck operator

l1'r e . ~2.34!

The disadvantage of the approach is that the free param
so determined is independent of the particular form of
short time propagator used, whereas our calculations
formed on model systems show that each short time appr
mation P(k) has its own optimal value ofr that may be a
function oft andt ~see Sec. III of the present article as we
as Ref.@8#!.

Before closing we note that the variational approach
path integrals is not new. It was developed first by Feynm
as early as 1972@21#. In the last decade, a considerable im
provement of Feynman’s original technique has been put
ward @22#. The basic idea of the refined treatment is to m
a physical system described by a general potential en
function V(q) onto a harmonic-oscillator reference syste
and to use the affiliated frequency as a variational parame
This treatment can yield realistic finite temperature prop
ties of quantum systems and it also requires much less c
puter time. The reader can easily verify that the meth
outlined in Secs. II A and II B further improve the varia
tional approach, while retaining its principal advantages.

III. NUMERICAL RESULTS

It is now our aim to test the relative efficacy of the ne
discrete path integral solutions and compare it with that
standard path integral representations. The latter are br
outlined in the Appendix and include the histogram repres
tation by Wehner and Wolfer@5#, the Trotter splitting of the
standard type as in quantum statistics@23,24#, and higher-
order approximations derived from the cumulant expans
for the short time propagator@9#. To simplify our compari-
son we shall employ below the free parameterr independent
of time, though the use of the time-dependent criterion
determiningr (t), Eq.~2.32!, is also feasible. As a test mode
we first consider a one-dimensional process governed by
c-
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~2.1!. This problem is simple enough to enable us to comp
with numerically exact results obtained by other means.
instance, on the order of 100 basis functions are already
ficient to achieve machine accuracy in the basis set eva
tion of the propagator almost in the whole time domain. A
second and more challenging example, we tackle the Kr
ers model of chemical reactions. The model is governed b
two-dimensional Fokker-Planck equation, whose diffusi
matrix does not possess an inverse. In this case, obtai
numerically exact nonstationary solutions is in general a
from simple task, while closed-form analytic results are on
available in the long time limit when the system approach
equilibrium.

A. Overdamped Brownian motion

In order to show that the present path integral solutio
are efficient for any system regardless of whether the po
tial can be represented as a sum of harmonic and anharm
terms, we first consider a one-dimensional model, Eq.~2.1!,
with a pure quartic potential given by

U~x!5 1
4 x4. ~3.1!

We shall apply the various approximations discussed ab
for the short time propagator to the path integral evaluat
of the second cumulantM2(t)5Š^x2(t)&‹. This quantity is
determined by the first two moments of the Fokker-Plan
equation, Eq.~C3!, and characterizes the width of the distr
bution functionP(x,t). The calculations are performed fo
D51 andx051, with t50.1. The method used to numer
cally evaluate Eq.~1.5! is described in Ref.@9#. A grid of 64
points in the interval@22.7,2.7# was found to be sufficien
for the quadrature. Finally, we compare with numerica
exact results that are obtained by a basis set method@25#.

To begin with, we illustrate the efficacy of the time
independent criterion for determiningr suggested in Sec. II
Eq. ~2.33!. According to that criterion, an optimal value o
the free parameter isr e51.04. Our calculations, performe
with the second-order Trotter-approximated propagator@Eq.
~2.16!#, reveal that the best choice ofr is very close to the
above estimation. This is evidenced by Fig. 1, which sho
the relative error

«5 @~approximate!2~exact!#/~exact! ~3.2!

in the path integral evaluation of the second cumulant m
by using Eq.~2.16! as a function oft. The most accurate
results are attained forr 50.95, which is nearly the first non
zero eigenvalue of the Fokker-Planck operator,l150.967.

For demonstrating the efficacy of Richardson’s extrapo
tion technique, we fixr 51 and repeat the calculation wit
t50.1, 0.05, and 0.025. Then Eqs.~2.13! are employed to
successively eliminate 1/N2 and 1/N4 errors. Figure 2 shows
the resulting errors obtained with the Trotter single s
propagator, Eq.~2.16!, using the true deterministic solution
Eq. ~2.20!, and its Taylor series approximation, Eq.~2.22!.
The logarithmic plot clearly illustrates that each removal
an additional power of 1/N2 increases accuracy by near
two orders of magnitude. An interesting~perhaps surprising!
finding revealed in our calculations is that the time reve
ibility, Eq. ~2.8!, does not play the decisive role that has be
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152 57A. N. DROZDOV AND J. J. BREY
attributed to it by Schmidt and Lee@16#. The enhanced erro
reduction is seen to occur even though the single step pr
gator @Eqs. ~2.16! and ~2.22!# fails to satisfy Eq.~2.8! ex-
actly. This is because the violations of the time reversibi

FIG. 1. Logarithm of the relative error log10u«u, Eq. ~3.2!, in the
path integral evaluation, witht50.1, of the second cumulant for
quartic potential@Eq. ~3.1!# and forx051 andD51 made by the
quasilinear Trotter-approximated propagator, Eq.~2.16! with r
50, 1, and 2.

FIG. 2. Successive error reduction made by Eqs.~2.13!. The
dashed, dot-dashed, and solid lines are, respectively, for erro
orderN22, N24, andN26. The results are obtained forr 51 using
the Trotter-approximated propagator, Eq.~2.16! with ~a! the true
deterministic solution@Eq. ~2.20!#, and~b! its Taylor series approxi-
mation @Eq. ~2.22!#.
a-

are of the same order as the error. Our finding is particula
important for multidimensional systems, as there is
closed-form expression forH(q,t) in this case.

Next, we apply the short time propagators obtained
truncating the power series after thek51, 2, 3, and 4 term,
Eq. ~2.30!, to the path integral evaluation of the same qua
tity. In order to see the efficacy of these approximations a
function of the free parameter, we performed calculatio
over a wide range ofr . We have found that for each value o
the truncation number there is its own optimal value ofr .
This optimal value varies drastically fromk to k11 and, in
contrast to that given by Eq.~2.33!, can become even nega
tive. The latter is evidenced by Fig. 3, which shows erro
obtained fork52 and 3. The bottom curves in the figur
correspond to the best choice ofr determined by computa
tion. We have also found that for all consideredk’s the
choicer 51 @according to Eq.~2.33!#, although good, is not
the best. It should be stressed, however, that even with
~far from best! choice ofr we are able to attain acceptab
accuracy withoutany increase of computational effort solel
by increasing the number of terms involved in the sum of E
~2.30!. As is seen from Fig. 4, a precision of 1024.5 is already
achieved fork54. This is in contrast to the fourth-orde
Trotter-approximated propagator, which requires for com
rable accuracy a computation that is three times as large~cf.
Fig. 2!. Finally, we note that in a wide range ofr results
obtained withk52 turn out to be very close to those ofk
53. One might thus expect that the extrapolation formula
Eq. ~2.11! could also be very efficient in this case. Indee

of

FIG. 3. Same as in Fig. 1, but for the short time propaga
given by the power series, Eq.~2.30! with ~a! k52 and~b! k53.
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our calculations reveal that the use of Eq.~2.11! may in-
crease accuracy by two and even three orders of magnit
But this is not generally the case for higher-order extrapo
tions of Eqs.~2.13!. Figure 5 shows errors made by using E
~2.30! for r 51.5 andk52, and with an initial value oft
50.1. The solid curve in the figure clearly illustrates th
application of Eqs.~2.13! to eliminate 1/N4 errors consider-
ably decreases accuracy rather than to further increase i~cf.
Fig. 2!. This is because the propagator formed ofN products
of the power series approximationsP(2) , though more accu-
rate than the Trotter-approximated propagator, does not
erally have errors proportional to only powers of 1/N2.

Finally, in Fig. 6 we plot the errors made by the vario
second-order quasilinear approximations for the short t
propagator, Eqs.~2.16!, ~2.30!, and ~C4!. Each of these ap
proximations is taken with its own best choice ofr deter-
mined by computation. Also shown are the errors made
the standard short time propagators based on a free-pa
reference system, Eqs.~1.6! and~B6!. As seen in the figure
the primitive short time approximation of Wehner an
Wolfer @Eq. ~1.6!# can at best reduce the error to a few p
cent, being thus the worst of the considered propagat
This is not surprising, as Eq.~1.6! follows from the cumulant
expansion for the propagator, Eq.~C4!, truncated atk51 for

FIG. 4. Successive error reduction made by the power se
short time propagator, Eq.~2.30! with r 51 andk51, 2, 3, and 4.
The parameters are the same as in Fig. 1.

FIG. 5. Same as in Fig. 2, but for the short time propaga
given by the power series, Eq.~2.30! with k52 andr 51.5.
e.
-

.

t

n-

e

y
cle

-
s.

r 50. Being truncated atk52 for r 51.5, the cumulant ex-
pansion of the short time propagator reduces the error
nearly one order of magnitude. But the error still rema
rather large in the initial time regime. Although no line
reference system is used in the standard Trotter formula@Eq.
~B6!#, the effect of preserving time reversibility is also th
reduction of the error by one order of magnitude. The pres
quasilinear second-order propagators are seen to furthe
duce the error roughly by a factor of 14. It should be point
out that the more accurate description is achieved with
extracomputational effort solely due to the proper choice
the reference system. In contrast, a precision of five sign
cant digits is attainable with the standard Trotter-formu
method, Eq.~B6!, just for t&0.03. While the method of
Wehner and Wolfer fails to reach this level of accuracy ev
thought50.001.

Next, we apply the same techniques to the dynamics
bistable system given by

U~x!52 1
2 x21 1

4 x4. ~3.3!

This example is more challenging in that forD!1 the first
nonzero eigenvalue of the Fokker-Planck operator beco
exponentially small

l15O~e21/2D!. ~3.4!

Consequently, simulations over very long times are requi
to describe all regimes of interest, reaching from fast
trawell relaxation (t@l2

21'1) to slow interwell equilibra-
tion (t@l1

21). In such a case, the standard way of reduc
errors of time discretization by decreasingt will substan-
tially increase the necessary computational effort and, th
fore, higher-order propagators are generally desirable. To
specific, we restrict our discussion to a moderately sm
value of the diffusion coefficient,D50.1. The calculation is
performed fort50.2 andx0521 on a grid of 64 points in

es

r

FIG. 6. Errors made by using various short time approximatio
The parameters are the same as in Fig. 1. Open circles: propa
of Wehner and Wolfer, Eq.~1.6!; solid circles: standard Trotte
formula, Eq.~B6!; dashed line: quasilinear Trotter approximatio
Eq. ~2.16! with r 50.95; dot-dashed line: cumulant expansion, E
~C4! with k52 andr 51.5; solid line: power series expansion, E
~2.30! with k52 andr 51.55.
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the interval@21.7,1.7#. Equation~2.33! gives in this case
r e50.05, which is close enough to the least nonvanish
eigenvaluel150.00277.

We again performed calculations with the two metho
described in Sec. II for different values of the free para
etersr . Since the conclusions drawn in this case are ess
tially the same as for the pure quartic oscillator we do
present these results. We only compare in Fig. 7 the accu
of the various approximations discussed above for the sin
step propagator. As expected, the power series expan
turns out to be the most efficient method. The error made
Eq. ~2.30! for k53 is seen to be even lower than that of t
fourth-order Trotter-approximated propagator that is c
structed with Eq.~2.16! using the extrapolation of Eq.~2.11!
to eliminate quadratic errors. The latter in turn is more ac
rate than the fourth-order cumulant expansion. It is also s
that the error made by the standard Trotter formula, Eq.~B6!,
is nearly two orders of magnitude larger than the errors m
by the present methods. It may be noted here that a prec
of 1025 is achievable in calculations with Eq.~B6! only for
t;0.05, i.e., with substantial increase of computational
fort. The error made by the method of Wehner and Wolfe
again much larger than those of the other techniques.

B. Kramers model

As a second example, we consider the original Kram
model, which consists of a unit mass particle in a poten
U(x), driven both by linear friction with coefficientg and by
thermal noise of temperatureb21 @26#. The dynamics is gov-
erned by the two-dimensional Fokker-Planck equation
the probability density of finding the particle at time mome
t at positionx with velocity v

] tP~x,v,t !5@2v]x1U8~x!]v1g]v~v1b21]v!#P~x,v,t !.

~3.5!
It is not hard to check by direct substitution that the statio
ary solution of Eq. ~3.5! has the standard Maxwell
Boltzmann form

FIG. 7. Same as in Fig. 6, but for a double well, Eq.~3.3!, and
for D50.1, with t50.2. Open circles: propagator of Wehner a
Wolfer, Eq.~1.6!; solid circles: standard Trotter formula, Eq.~B6!;
dashed line: fourth-order Trotter-approximated propagator, E
~2.11! and ~2.16! with r 50; dot-dashed line: cumulant expansio
Eq. ~C4! with k54 andr 520.35; solid line: power series expan
sion, Eq.~2.30! with k53 andr 520.25.
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Ps~x,v !5Z21exp@2bv2/22bU~x!#. ~3.6!

After integration overv it reduces to Eq.~2.3! with D
52b21. The above model, although simple, is of enormo
utility in understanding and evaluating the influence of t
medium on dynamical processes. It is commonly used
studies of superionic conductors, Josephson tunneling ju
tions, nonlinear optics, nucleation, and escape rate theo
@27#. The essential features of many of these proces
mimic the dynamics of potential barrier crossing, a proble
that was first treated by Kramers in his seminal paper@26#.

To be specific we choose a symmetric bistable poten
of the form

U~x!5E~x221!2, ~3.7!

with E being the height of the potential barrier. This examp
is particularly challenging for several reasons. First, the le
nonvanishing eigenvalue of the Fokker-Planck operato
exponentially small,l15O(e2bE). But this is not the only
reason that may require simulations over very long tim
Long time length simulations are also necessary in the w
damping limit, g@1, even though the potential barrier
rather small,bE&1. In such a case, the energy of the pa
ticle is an almost conserved quantity, and the particle und
goes many oscillations between the stable states until it t
malizes in one of them. Second, Eq.~3.5! cannot be cast into
a Hermitian form, as its diffusion matrix is singular. Th
latter property is an obstacle for employing the efficient
ries representation technique, outlined in Sec. II B, and a
prevents us from making use of powerful nonperturbat
schemes of quantum mechanics. Standard numerical m
ods such as basis set expansions could be efficient in st
ing dynamical properties of Eq.~3.5! in the intermediate and
long time regimes provided that the desired level of accur
is just a few percent. Otherwise, on the order of 40–50 ba
functions per variable are necessary for a precision of 126

and this limits the practical applicability of the approach
very long times, i.e., to the cases where the first two eig
values form the main contribution to the transition probab
ity. Finally, the second cumulant of the variablex tends to
zero as@9#

Š^x2&‹5 2
3 gb21t31O~t4!, ~3.8!

rather than linearly as is the case for processes with inv
ible diffusion matrices, Eq.~1.8!. This means that witht→0
the propagator of Eq.~3.5! rapidly degenerates into a delt
function, requiring very fine spatial discretization. In such
case, the standard way of reducing errors by decreasint
will substantially increase the storage requirements and
ecution time necessary to get good resolution in path inte
calculations.

The above observations are in drastic contrast to
Trotter-formula method outlined in Sec. II A, which allow
one to get very accurate results without using large dim
sional matrices. It is an approach that can be applied
simple and complex systems and singularity of the diffus
matrix does not present special problems. In particular, w
applied to Eq.~3.5!, it yields a second-order propagator
the form @7#

s.
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P~2!~x,v,tux0 ,v0!5POU@x,v2tG̃~x!/2,tux0 ,v0

1tG̃~x0!/2#, ~3.9!

where G̃(x)5rx2U8(x), while the reference propagato
Pr(x,v,tux0 ,v0) is defined by

B52v]x1rx]v1g]v~v1b21]v!. ~3.10!

An explicit expression forPr can be found in Ref.@2#. An
accurate description of dynamical properties is attaina
with Eq. ~3.9! in all regimes of practical interest with rela
tively large time stepst thanks to the numerical efficiency o
the enhanced error reduction techniques. In order to illust
this statement, we have calculated the stationary solu
Pe(x) for different values ofb, g, x0 , and v0 on a 64
364 (x,v) grid in the intervalsuxu<2 and uvu<6. The
quadrature of Eq.~1.5! are evaluated iteratively by takin
advantage of the fast Fourier transform~FFT!. Although path
integral representations of stochastic dynamics are, in g
eral, not suited to the FFT, a way for overcoming this pro
lem has been developed in a previous paper@17#. The
method employs the Stirling interpolation to dynamically r
adjust the distribution function every time step with a m
increase in cost and with no loss of precision.

Since except for the Trotter-formula method~Sec. II A!
and the cumulant expansion~Appendix C!, the rest of the
discussed path integral approaches are not applicable to
~3.5!, results of only these two methods are presented in
8. The figure is a plot of the relative errors obtained inPe(x)
for b51, E55, with r 50. As anticipated, these results a
pear to be independent of the initial conditions and fricti
coefficient. We note the relatively easy way by which
acceptable accuracy of 1026 is achieved in terms of the
present Trotter-approximated propagator with discretizati
t50.1, 0.05, and 0.025 using Eq.~2.13! to remove quadratic
and quartic errors. It is also important that the accuracy
the method is rather insensitive tog almost in all regimes of
physical interest ranging from the underdamped Brown
motion, g!1, to the spatial diffusion regime,g@1. The
same, however, is not true for the cumulant expans
method~a generalization of the method to many dimensio
can be found in Ref.@9#!. Although its accuracy, fort50.1,
is seen to be comparable with that of the Trotter-form
method, the utility of the propagator obtained by truncat
the cumulant expansion turns out to be very restrictive w
respect to the friction coefficient. This is because any fin
order truncation of the cumulant expansion fails to prov
the positivity of the second cumulants for allt, g, x0 , and
v0 at once. For eacht the latter become negative with in
creasingg, and very short time steps are required to ov
come this problem.

IV. CONCLUDING REMARKS

At present there exist several theoretical approache
constructing path integral representations for Fokker-Pla
dynamics. Their mutual correspondence, however, is com
cated. This paper is an attempt to put the approaches in
der. We briefly summarize and review much of what h
been done before in this field with the aim to compare
le
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relative efficacy of different path integral representatio
available in the literature. Each of these representations
its own advantages and drawbacks. Specific advanta
sought include having a rapid convergence rate, being e
to implement, and requiring a small amount of modificati
when the Fokker-Planck coefficients are changed. From
point of view, the approach recently introduced by one of
@8,17# ~A.N.D.! is particularly interesting. Its key idea is t
treat a general Fokker-Planck process as a perturbation
reference Ornstein-Uhlenbeck process, and to then use
turbation techniques to quantify what is missing from t
reference description. We have shown that the represe
tions so obtained are both theoretically and numerically
vantageous with respect to other path integral representa
now in use in the sense that they give much more accu
results with a little computation. It is particularly pleasin
that high accuracy is achievable with the present techni
even though the time stept is rather large. A substantia
reduction of errors is attained by appropriately choosing
free parameterr and/or by increasing the order of approx
mation k. The examples discussed in Sec. III are very e
couraging in this regard. In contrast, the accuracy of the s
dard path integral representations is controlled only
increasing the number of integration variablesN.

As anticipated, the accuracy of the power series meth

FIG. 8. Successive error reduction in the path integral eva
tion of the stationary solution of a Kramers model, Eqs.~3.5! and
~3.7! with bE55. The dashed, dot-dashed, and solid lines are,
spectively, for errors of order 1/N2, 1/N4, and 1/N6. ~a! Trotter-
approximated propagator, Eqs.~3.9! and ~2.13!; ~b! cumulant ex-
pansion.
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156 57A. N. DROZDOV AND J. J. BREY
Eq. ~2.30!, appears to be more favorable than that of
other techniques, if the criterion is solely accuracy for
given time stept. We recognize, however, that this is not th
only aspect when discussing the power series propagator
sus, e.g., the standard Trotter formula, Eq.~B6!. The latter is
more easily implemented due to its very simple structu
while the former involves the various integrals whose eva
ation may require a more analytical work. On the other ha
both the power series expansion technique and the stan
Trotter-formula method fail to treat processes with singu
diffusion matrices. In view of the above remark, the pres
Trotter-approximated propagator@Eq. ~2.16!# seems prefer-
able. Being structurally similar to the standard Trotter a
proximation, it nevertheless shows a dramatic improvem
over the latter in that it is applicable to an arbitrary stocha
process and requires considerably less integrations
achieving a given precision.
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APPENDIX A: HISTOGRAM REPRESENTATION
OF WEHNER AND WOLFER

Wehner and Wolfer@5# developed their iterative path in
tegral method using Eqs.~1.5! and ~1.6!, and the Gaussian
nature of the postpoint variables. The method is based o
histogram representation of the distribution function and
duces the problem of numerically solving the Fokker-Plan
equation to simple matrix vector multiplications,

Pi~ t1t!5Ti j ~t!Pj~ t !, 1< i , j <M , ~A1!

wherePi(t)5P(xi ,t), and where the elements of the tra
sition matrix Ti j are evaluated on a grid ofM points, xi
5x11( i 21)h, by numerical quadratures

Ti j ~t!5
1

hExi2h/2

xi1h/2

dxE
xj 2h/2

xj 1h/2

dyP~1!~x,tuy!. ~A2!

However, the primitive single step propagator used by W
hner and Wolfer, Eq.~1.6!, fails to treat processes with non
invertible diffusion matrices and requires very short time
crements for accuracy. Accordingly, the dimension of
resulting integral and, therefore, the number of matrix vec
multiplications can be very high if the desired propagat
time is long. Moreover, the number of matrix elements to
stored as well as the execution time necessary for each
trix vector multiplication grow exponentially with the dimen
sionality of the system. This makes the above propaga
scheme rather impractical for systems with more than
degree of freedom. Recent applications of the method in n
roscience studies have shown how difficult it can be even
two dimensions to get good resolution because of CPU c
straints@6#.
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APPENDIX B: FAST FOURIER TRANSFORM METHOD

A major step forward was the introduction of efficie
grid methods, such as those based on the FFT@23#. When
applied to stochastic dynamics, high proficiency is usua
achieved by making use of an apparent analogy between
Fokker-Planck equation for the probability density functi
and the Bloch equation for the coordinate density ma
@24#. This analogy always exists for one-dimensional s
tems; but it is not a generic case in many dimensions. M
tidimensional stochastic dynamics, Eq.~1.1!, can be cast into
the Hermitian form

] tc~q,tuq0!52Hc~q,tuq0![@ 1
2 Di j ] i j

2 2V~q!#c~q,tuq0!,

~B1!

if and only if the Fokker-Planck operator obeys strict d
tailed balance, i.e.@2#,

L~Pef !5PeL
1 f ~B2!

for any smooth functionf , whereL1 denotes the backward
operator

L15Gi~q!] i1
1
2 Di j ] i j

2 , ~B3!

while Pe is the equilibrium distribution satisfyingLPe50.
In such a case, the auxiliary quantityc(q,tuq0) is associated
to the propagatorP(q,tuq0) by means of the ansatz

P~q,tuq0!5APe~q!/Pe~q0!c~q,tuq0!, ~B4!

while the potentialV(q) is determined in terms of the drif
coefficientsGi and the inverse diffusion matrixDi j by

V~q!5 1
2 @Di j Gi~q!Gj~q!1] iGi~q!#. ~B5!

If Eq. ~B2! does not hold, a mathematical obstacle exists
applying by analogy the quantum principles because
Fokker-Planck operator is generally non-Hermitian.

Path integral methods of the standard type as in quan
statistics have been employed in special cases whereL can
be transformed to a Hermitian form@24#. The most common
procedure of approximating the propagator for short timet
utilizes the symmetric Trotter splitting of the time evolutio
operator, which is based on partitioning the Hamiltonian in
kinetic and potential energy terms@10,24#. When applied to
one-dimensional systems, this yields a second-order s
time propagator with a free-particle reference system read

c~2!~x,tux0!5~2ptD !21/2exp$2~x2x0!2/2tD

2t@V~x!1V~x0!#/2%. ~B6!

With Eq. ~B6!, the expression for a single iteration becom
well suited to the FFT,
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P~x,t1t!5~2p!21exp@2U~x!/D2tV~x!/2#E
2`

`

dz

3exp~2 izx2tDz2/2!E
2`

`

dy

3exp@ izy1U~y!/D2tV~y!/2#P~y,t !.

~B7!

The resulting propagation scheme is obviously efficient
terms of storage requirements, as no transition matrix is
volved in calculations. In addition, the favorable scaling
the fast Fourier transform, which is almostlinear with the
number of coupled degrees of freedom@19#, allows for much
more rapid evaluation of the integrals in Eq.~1.5! than ma-
trix multiplication techniques. The main disadvantage of
method is that it is based on the primitive~free-particle, low-
order! short time propagator which cannot be applied to s
tems without strict detailed balance.

APPENDIX C: CUMULANT GENERATING FUNCTION
FORMALISM

Yet another way to construct higher-order analytic a
proximations for the propagator is to make use of the cum
lant generating function formalism@9#. The key points of the
method are representing the propagator in the form

P~x,tux0!5~2p!21E
2`

`

dzexp@2 ixz1w~z!#, ~C1!

and expanding the generating functionw(z) in a power se-
ries,

w~z!5 i nMnzn/n!, ~C2!

where the quantitiesMn , which are called the cumulants o
the variablex, are expressible in terms of moments

M15^x&, M25^x2&2^x&2,
~C3!

M35^x3&23^x&^x&212^x&3, . . . .

An explicit general formula for converting moments into c
mulants can be found in Ref.@1#. It should be noted here tha
both cumulants and moments are functions of the prepoinx0
and the time incrementt, but to keep the notation simple w
do not indicate this explicitly. When the cumulantsMn are
all determined, the Fourier inversion formula~C1! gives the
propagatorP(x,tux0) for an arbitrary net incrementt. As,
however, we are interested in the short time dynamics
truncated cumulant expansion can be used to determine
short time propagator

P~k!~x,tux0!5~2p!21E
2`

`

dzexpF iz~M12x!2 1
2 M2z2

1 (
n53

k

Mn~ iz!n/n! G . ~C4!

In deriving the above expression we have used that@9#
n
-

f

e

-

-
-

a
he

M15x01O~t!, M25O~t!, Mn5O~tn! ~n.2!.
~C5!

The cumulants involved in Eq.~C4! are to be evaluated up t
and including terms of ordertk. This can be done by expand
ing the formal solution for moments

^xn~ t !&5@etL1
xn#x0

in a Taylor series int @9#. Here we outline an alternative
method which allows us to construct an expansion for cum
lants by treating a general Fokker-Planck process as a
turbation of an Ornstein-Uhlenbeck process. To this end,
again split the full drift coefficient into a linear partGr(x)
52rx and the restG̃(x)5G(x)1rx, and integrate the mo
ments equations of motion fromt50 to t5t,

^xn~t!&5e2nrtx01nE
0

t

dsenr~s2t!

3^$xn21G̃~x!1 1
2 ~n21!Dxn22%~s!&. ~C6!

Explicit expressions for the moments can then be obtai
by expanding the integrand of Eq.~C6! in a Taylor series
about the prepointx0. Repeated iteration of the resultin
equations, while neglecting terms of order higher thant3,
gives the following expressions for the first few cumulant

M15x01a1~t!G01a2~t!G0G̃081a1
2~t!DG09/4

1a3~t!G0G̃08
21a4~t!~2G0

213DG̃08!G09

1a5~t!DG0G0-1a6~t!D2G0
IV ,

M25D@ 1
2 a1~2t!1a1

2~t!G̃081a7~t!G̃08
214a5~t!G0G09

18a6~t!DG0-#,

M35~126e22r t18e23r t23e24r t!D2G09/4r 3, ~C7!

whereF05F(x0), F5G,G8, . . . , and theexpansion coef-
ficients are

a1~t!5~12e2r t!/r ,

a2~t!5@12~11r t!e2r t#/r 2,

a3~t!5@12~11r t1 1
2 r 2t2!e2r t#/r 3,

a4~t!5~122r te2r t2e22r t!/4r 3,

a5~t!5@22~312r t!e2r t12e22r t2e23r t#/8r 3,

a6~t!5~328e2r t16e22r t2e24r t!/96r 3,

a7~t!5@324~11r t!e2r t1~112r t!e22r t#/2r 3.
~C8!

The method is rather simple to implement, but also gene
and rigorous and allows for thesystematicderivation of the
short time propagator valid to any desired precision in ti
incrementt. The calculations are doableanalytically regard-
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less of the specific form of the drift and diffusion coeffi
cients, thus permitting one to get accurate results with m
mal computational effort. At first sight we arrive, with the
developments, at a powerful high-accuracy method tha
efficient in terms of speed and storage requirements, sim
taneously. Indeed, the calculations we have performed
model systems show that the method is accurate for v
short time stepst if one truncates the series in Eq.~C4! at
on

It
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ry

high enough orderk. With increasingt, however, the error
begins to grow very rapidly, and beyond sometmax that is
noticeably smaller than unity, the method fails to produ
correct results. This is because the range of validity of
~C4! is restricted by the inequalityM2.0, which is satisfied
only in the limit t→0. It is not hard to prove that this is
generally true for any finite-order truncation of the cumula
expansion, Eq.~C4! @28#.
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